Selected KinExA References
Affinity & Kinetic Measurements:
KinExA technology overview:
KinExA’s role in drug discovery:
Significance of “solution phase” measurements to unmodified molecules:
Comparison to SPR:
Sensitivity to measure tight binders:
Reverse assay techniques:
Whole cell binding techniques:
Unpurified antigens:
Other interesting studies:
Immunoassay Techniques:
KinExA technology overview:
- Wani T.A., et al. 2016. New analytical application of antibody-based biosensor in estimation of thyroid-stimulating hormone in serum. Bioanalysis 10.4155/bio-2015-0034. https://www.ncbi.nlm.nih.gov/pubmed/26978548
- Glass T.R., Winzor D.J. 2014. Confirmation of the validity of the current characterization of immunochemical reactions by kinetic exclusion assay. Anal Biochem 456: 38-42. http://www.ncbi.nlm.nih.gov/pubmed/24751468
- Bee C., et al. 2012. Exploring the dynamic range of the kinetic exclusion assay in characterizing antigen-antibody interactions. PLOS ONE 7(4): e36261. http://www.ncbi.nlm.nih.gov/pubmed/22558410
- Darling R.J. and Brault P.A. 2004. Kinetic exclusion assay technology: characterization of molecular interactions. Assay and Drug Dev Tech 2(6): 647-657. http://www.ncbi.nlm.nih.gov/pubmed/15674023
KinExA’s role in drug discovery:
- Danial M, et al. 2017.Site-Specific Polymer Attachment to HR2 Peptide Fusion Inhibitors against HIV-1 Decreases Binding Association Rates and Dissociation Rates Rather Than Binding Affinity. Bioconjug Chem. 10.1021/acs.bioconjchem.6b00540.https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1021%2Facs.bioconjchem.6b00540
- Kariolis MS, et al. 2017. Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. J Clin Invest. 10.1172/JCI85610. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1172%2FJCI85610
- Fan Y., et al. 2016. Immunological Characterization and Neutralizing Ability of Monoclonal Antibodies Directed Against Botulinum Neurotoxin Type H. The Journal of Infectious Diseases 15;213(10):1606-14. https://www.ncbi.nlm.nih.gov/pubmed/26936913
- Köck, K., et al. 2015. Preclinical development of AMG 139, a human antibody specifically targeting IL-23. British Journal of Pharmacology 172:159-172. http://www.ncbi.nlm.nih.gov/pubmed/25205227
- Tabrizi M.A., et al. 2009. Translational strategies for development of monoclonal antibodies from discovery to the clinic. Drug Discov Today 14(5/6): 298-305. http://www.ncbi.nlm.nih.gov/pubmed/19152840
Significance of “solution phase” measurements to unmodified molecules:
- Tigue NJ, et al. 2017. MEDI1873, a potent, stabilized hexameric agonist of human GITR with regulatory T-cell targeting potential. Oncoimmunology.10.1080/2162402X.2017.1280645. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1080%2F2162402X.2017.1280645
- Kusano-Arai 0., et al. 2016. Kinetic exclusion assay of monoclonal antibody affinity to the membrane protein Roundabout 1 displayed on baculovirus. Anal Biochem.10.1016/j.ab.2016.04.004. https://www.ncbi.nlm.nih.gov/pubmed/27095060
- Blake R.C., Li X., Blake D.A. 2007. Covalent and noncovalent modifications induce allosteric binding behavior in a monoclonal antibody. Biochemistry 46: 1573-1586. http://www.ncbi.nlm.nih.gov/pubmed/17279622
Comparison to SPR:
- Fleming JK, Wojciak JM. 2017. Measuring Sphingosine-1-Phosphate: Protein Interactions with the Kinetic Exclusion Assay. Methods Mol Biol. 10.1007/7651_2017_5. https://www.ncbi.nlm.nih.gov/pubmed/28349502
- Abdiche YN. et al. 2016. Assessing kinetic and epitopic diversity across orthogonal monoclonal antibody generation platforms. MAbs. 10.1080/19420862.2015.1118596. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1080%2F19420862.2015.1118596
- Kusano-Arai 0., et al. 2016. Kinetic exclusion assay of monoclonal antibody affinity to the membrane protein Roundabout 1 displayed on baculovirus. Anal Biochem.10.1016/j.ab.2016.04.004. https://www.ncbi.nlm.nih.gov/pubmed/27095060
- Drake A.W., et al. 2012. Biacore surface matrix effects on the binding kinetics and affinity of an antigen/antibody complex. Anal Biochem. 429(1):58-69. http://www.ncbi.nlm.nih.gov/pubmed/22766435
Sensitivity to measure tight binders:
- Abdiche YN. et al. 2016. Assessing kinetic and epitopic diversity across orthogonal monoclonal antibody generation platforms. MAbs. 10.1080/19420862.2015.1118596. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1080%2F19420862.2015.1118596
- Owyang A.M., et al. 2011. XOMA 052, a potent, high-affinity monoclonal antibody for the treatment of IL-1B-mediated diseases. mAbs 3(1): 49-60. http://www.ncbi.nlm.nih.gov/pubmed/21048425
- Champagne K., Shishido A., Root M.J. 2009. Interaction of HIV-1 inhibitory peptide T20 with gp41 N-HR coiled coil. J Biol Chem 284: 3619-3627. http://www.ncbi.nlm.nih.gov/pubmed/19073602
- Kostenuik P.J., et al. 2009. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL J Bone Miner Res 24: 182-195. http://www.ncbi.nlm.nih.gov/pubmed/19016581
- Luginbuhl B., et al. 2006. Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. J Mol Biol 363: 75-97. http://www.ncbi.nlm.nih.gov/pubmed/16962610
- Rathanaswami P., et al. 2005. Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8. Biochem Biophys Res Comm 334: 1004-1013. http://www.ncbi.nlm.nih.gov/pubmed/16038881
Reverse assay techniques:
- Razai A., et al. 2005. Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J Mol Biol 351: 158-169. http://www.ncbi.nlm.nih.gov/pubmed/16002090
Whole cell binding techniques:
- Bedinger, D., et al. 2015. Differential pathway coupling of activated insulin receptor drives signaling selectivity by XmetA, an allosteric partial agonist antibody. J Pharmacol Exp Ther353(1):35-43. http://www.ncbi.nlm.nih.gov/pubmed/25613982
- Rathanaswami P., Babcook J., Gallo M. 2008. High-affinity binding measurements of antibodies to cell-surface-expressed antigens. Anal Biochem 373: 52-60. http://www.ncbi.nlm.nih.gov/pubmed/17910940
- Xie L., et al. 2005. Measurement of the functional affinity constant of a monoclonal antibody for cell surface receptors using kinetic exclusion fluorescence immunoassay. J Immunol Methods 304: 1-14. http://www.ncbi.nlm.nih.gov/pubmed/16098983
Unpurified antigens:
- Wani T.A., et al. 2016. Analytical Application of Flow Immunosensor in Detection of Thyroxine and Triiodothyronine in Serum. Assay Drug Dev Technol.14(9):535-542. https://www.ncbi.nlm.nih.gov/pubmed/27801595
- Bee C., et al. 2013. Determining the binding affinity of therapeutic monoclonal antibodies towards their native unpurified antigens in human serum. PLOS ONE 8(11): e80501. http://www.ncbi.nlm.nih.gov/pubmed/24223227
- Fujino, Y., et al. 2012. Robust in vitro affinity maturation strategy based on interface-focused high-throughput mutational scanning. Biochem Biophys Res Commun 4283:395-400. http://www.ncbi.nlm.nih.gov/pubmed/23103372
- Rathanaswami P., et al. 2011. Kinetic analysis of unpurified native antigens available in very low quantities and concentrations. Anal Biochem 414: 7-13. http://www.ncbi.nlm.nih.gov/pubmed/21371417
Other interesting studies:
- Li X., Kaattari S.L., Vogelbein M.A., Vadas G.G., Unger M.A., 2016. A highly sensitive monoclonal antibody based biosensor for quantifying 3-5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples. Sens Biosensing Res. 7:115-120. https://www.ncbi.nlm.nih.gov/pubmed/26925369
- Lou J., et al. 2010. Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. Protein Eng Des Sel 23(4): 311-319. http://www.ncbi.nlm.nih.gov/pubmed/20156888
- Kahle K.M., Steger H.K., Root M.J. 2009. Asymmetric deactivation of HIV-1 gp41 following fusion inhibitor binding. PLOS Path 5(11): 1-11. http://www.ncbi.nlm.nih.gov/pubmed/19956769
- Nowakowski A., et al. 2002. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc Natl Acad Sci 99: 11346-11350. http://www.ncbi.nlm.nih.gov/pubmed/12177434
Immunoassay Techniques:
- Darwish I.A., et al. 2013. Kinetic-exclusion analysis-based immunosensors versus enzyme-linked immunosorbent assays for measurement of cancer markers in biological specimens. Talanta 111: 13-19. http://www.ncbi.nlm.nih.gov/pubmed/23622520
- Prieto-Simon B., Miyachi H., Karube I., Saiki H. 2010. High-sensitive flow-based kinetic exclusion assay for okadaic acid assessment in shellfish samples. Biosens Bioelectron 25: 1395-1401. http://www.ncbi.nlm.nih.gov/pubmed/19939663
- Sasaki K., Oguma S., Namiki Y., Ohmura N. 2009. Monoclonal antibody to trivalent chromium chelate complex and its application to measurement of the total chromium concentration. Anal Chem 81: 4005-4009. http://www.ncbi.nlm.nih.gov/pubmed/19438265
- Glass T.R., Ohmura N., Saiki H. 2007. Least detectable concentration and dynamic range of three immunoassay systems using the same antibody. Anal Chem 79: 1954-1960. http://www.ncbi.nlm.nih.gov/pubmed/17256970
- Bromage E.S., et al. 2007. The development of a real-time biosensor for the detection of trace levels of trinitrotoluene (TNT) in aquatic environments. Biosens Bioelectron 22: 2532-2538. http://www.ncbi.nlm.nih.gov/pubmed/17088054
- Sasaki K., Glass T.R., Ohmura N. 2005. Validation of accuracy of enzyme-linked immunosorbent assay in hybridoma screening and proposal of an improved screening method. Anal Chem 77: 1933-1939. http://www.ncbi.nlm.nih.gov/pubmed/15801721
- Glass T.R., et al. 2004. Use of excess solid-phase capacity in immunoassays: advantages for semicontinuous, near-real-time measurements and for analysis of matrix effects. Anal Chem76: 767-772. http://www.ncbi.nlm.nih.gov/pubmed/14750874
- Ohmura N., Lackie S., Saiki H. 2001. An immunoassay for small analytes with theoretical detection limits. Anal Chem 73: 3392-3399. http://www.ncbi.nlm.nih.gov/pubmed/11476240